

0040-4039(94)01317-9

Reductions and Radical Cyclizations of Aryl and Alkyl Bromides Mediated by NaBH₄ in Aqueous Base

Roopa Rai and David B. Collum*

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, N.Y. 14853-1301

KEY WORDS: radical cyclization; sodium borohydride; aqueous.

Abstract: Reductions and free radical cyclizations of alkyl- and sayl bromides are effected in aqueous base by NaBH4 in conjunction with a base-soluble dialkyltin(IV) reagent and 4,4'-ezobis(4-cyanovaleric acid) (ACVA). The aryl bromides reduce at lower rates under tin-free conditions using simply NaBH4-ACVA.

As part of a developing interest in aqueous organic chemistry,1 our attention was drawn to the chemistry of carbon centered radicals.² Although many water-compatible reactions likely involve radical intermediates, explicit aqueous radical chemistry is not well developed.³ The most prominent example is that reported by Breslow and Light entailing aqueous reductions using the water-soluble (MeOCH₂CH₂OCH₂CH₂CH₂)₃SnH (1) with the aid of a commercially available, water soluble initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA).⁴ Mixtures of 1 and ACVA certainly offer extremely viable water-compatible equivalents to the n-Bu₃SnH/AIBN combination used so frequently in organic solvents. However, the requisite 5-step synthesis of 1 proved restrictive for our needs. We had the notion that *in situ* reduction⁵ of a more accessible water-soluble tin halide (or pseudo-halide) by NaBH₄ might offer a useful alternative to the Breslow-Light protocol.

We prepared dialkyltin(TV) reagent 2 by modifying a literature hydrostannylation protocol⁶ as shown in eq
1. The identity of 2 was difficult to establish due to its insolubility in water and the standard organic solvents.

The assignment is based upon elemental analysis,⁶ IR data,⁷ and the propensity of tin acylates to form insoluble polymers.⁸ Compound 2 readily dissolves in aqueous base, affording a species exhibiting NMR spectroscopic properties consistent with 3. Furthermore, acidification causes immediate precipitation of 2.

$$\begin{array}{c|c} & & & \\ \hline & &$$

Heating a solution of *m*-bromobenzoic acid, 2 (i.e. 3, 1.2 equiv), NaBH₄ (2.0 equiv), and ACVA (0.1-1.0 equiv) in degassed 1.5% KOH/H₂O at 80 °C for several hours affords benzoic acid in near quantitative yield.

Photolysis does not measurably influence the reaction rates or yields. A limited survey of radical cyclizations (Table I) revealed rates and isolated yields that are comparable to those obtained using n-Bu₃SnH/AIBN on the corresponding esters in benzene. We observed no unusual effects of the water. A resistance of alkyl-and aryl chlorides to reduce should be noted. Additionally, efforts to generate a preformed tin-hydride species analogous to the Breslow-Light reagent for reduction of NaBH₄-sensitive substrates met with little success.

Table I. Reduction of aryl and alkyl bromides by aqueous NaBH₄-ACVA-3.

Cubatnata	Don don't	Wald.
Substrate Br	<u>Product</u>	Yield
соон	соон	>90%
Ar OEt Br	H ₂ C-COOE1	62% ^c
O LOEI	OCE	68% ^d
Вг	CT. COOCH	75%
COOH	COOCH	75%
Ar OEi	Ar OEt OEt	75% ^c

 $^{^{}a}$ Ar = ρ -C₆H₄COOH, Ar' = m-C₆H₄COOH. b Substrates (0.04 mmol) were reduced at 90 o C in degassed 1.5% aq KOH (1.33 mL) containing NaBH₄ (2.0 equiv), ACVA (1.0 equiv), and 2 (1.2 equiv). Normal extractive workup, esterification with ethereal CH₂N₂ and purification (flash chromatography) afforded the reported yields. c Isolated as a mixture containing two of four possible stereoisomers. Equilibrations with TiCl₄ and analogy with literature reports (Stork, G.; Mook, R.; Billen, S. A.; Rychnovsky, S. D. *J. Am. Chem. Soc.* 1983, 105, 3741) implicate *trans* 1,2 stereochemistry with a mixture at the acetal. Mixture of both stereolsomers.

Control experiments revealed that the ACVA radical initiator and NaBH₄ are both essential components. While the reduction is catalytic in both 2 and ACVA, the rates reflect a qualitative proportionality to the concentrations of 2, NaBH₄, and ACVA. GC-MS analysis of the benzoic acid resulting from reduction of mbromobenzoic acid by NaBH₄/D₂O and NaBD₄/D₂O demonstrate that the hydrogen atom derives from the NaBH₄. However, the role of the tin hydride precursor is more complex than first anticipated. Omission of 2 completely precludes reductions of aliphatic bromides. Sluggish reduction of the aliphatic bromides is observed when 2 is replaced by PhSnCl₃ (i.e. PhSn(OH)_n). Neither elemental tin nor SnCl₂ mediates any detectable reduction. In contrast, aryl bromides reduce smoothly, albeit at reduced rates, using NaBH₄/ACVA in the absence of any tin-containing species. Reduction rates comparable to the tin-mediated examples are observed using excess (8.0 equiv) NaBH₄. We are unaware of any reports of catalysis by azo initiators. Additional examples of the NaBH₄/ACVA-mediated reductions of aryl halides are listed in Table II.

Table II. Reduction of aryl and alkyl bromides by aqueous NaBH₄-ACVA. Ab

Substrate	<u>Product</u>	<u>Yield</u>
COOH CI Br	COOH	>90%
COOH COOH	COOCH	75%
Ar O OE:		0%

^aAr = p-C_eH₄COOH. ^bReaction conditions were as described in the text. Yields correspond to purified material after a normal extractive workup and esterification with ethereal CH₂N₂.

The role of the tin(IV) species and the mechanism of the reduction are not at all clear at this time. However, both the tin-catalyzed reduction protocol as well as the tin-free NaBH₄-ACVA variant may find utility due to reagent availability and overall simplicity.

Acknowledgement. This work was generously supported by the Johnson & Johnson Focussed Giving Program and Pfizer, Inc. We also thank Professor Ned Porter (Duke University) for a helpful discussion.

References and Footnotes

- 1. Li, C.-J. Chem. Rev. 1993, 93, 2023
- 2. Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
- For selected examples see, Mariaggi, N.; Cadet, J.; Teoule, R. Tetrahedron 1976, 32, 2385. Fukunishi, K.; Shimda, M.; Hisamune, R.; Akita, M.; Kuwabara, M.; Yamanaka, H.; Momura, M. Chem. Lett. 1991, 337. Haseqawa, E.; Curran, D. P. J. Org. Chem. 1993, 58, 5008. Curran, D. P.; Qi, H.; Porter, N. A.; Su, Q.; Wu, W. X. Tetrahedron Lett. 1993, 34, 4489.
- Light, J.; Breslow, R. Tetrahedron Lett. 1990, 21, 2857. Light, J.; Breslow, R. Org. Synth. 1993, 72, 199.
- 5. Corey, E. J.; Suggs, J. W. J. Org. Chem. 1975, 40, 2554.
- 6. Hutton, R. E.; Oakes, V. Adv. Chem. Series 1976, 157, 123. 2 and 3 were prepared as follows: Six equiv of conc HCl were added dropwise to a suspension of tin (25.2 mmol) and acrylic acid (50.5 mmol) in H₂O (5 mL). The mixture was heated at 75 °C for 4 h. The reaction mixture was concentrated and treated with 20% aq KOH (exotherm). The nearly homogeneous mixture was filtered and the filtrate acidified with 1 N H₂SO₄ with slow formation of a white solid. The solid was filtered, washed successively with water and methanol, and then dried in vacuo to afford 4.5 g of 2 (68% yield). IR (Nujol, in cm-1) 1550, 1435, 625; Anal. Calcd. for C₆H₈O₄Sn-1/2 H₂O: C, 26.52; H, 3.31. Found: C, 26.27; H, 3.33. Dissolution of 2 in aqueous base affords 3: ¹H NMR (D₂O-KOD) δ 2.26 (t, 4, J = 7.4 Hz, 2J[¹H-¹¹¹9Sn] 133 Hz), 1.15 (t, 4, J = 7.4 Hz, ³J[¹H-¹¹¹9Sn] 105 Hz); ¹³C{¹H}NMR (D₂O-KOD) δ 18.5 (¹J[¹H-¹¹¹9Sn] 3736 Hz), 33.1 (²J[¹H-¹¹¹9Sn] 180 Hz), 185.7 (³J[¹H-¹¹¹9Sn] 320 Hz).
- 7. Calogero, S.; Furlan, P.; Peruzzo, V.; Plazzogna, G. Inorg. Chim. Acta 1977, 22, 55.
- 8. Davies, A. G.; Smith, P. J. "Comprehensive Organometallic Chemistry"; Wilkinson, G.; Stone, F.; Abel, E. W., ed.; Pergamon Press, New York 1982; Vol 2, 519.
- 9. For related NaBH₄-mediated aryl halide reductions see Boisvert, G.; Giasson, R. *Tetrahedron Lett.* 1992, 33, 6587.

(Received in USA 17 May 1994; revised 15 June 1994; accepted 6 July 1994)