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Abstract: Roductions and froe mdical cyclizations of alkyl- and ary] bromides sre effected in agqueous base by NaBH, in conjunction '
with a basc-soluble diakykin(IV) rcagent and 4,4'-azobis(4-cyanovaleric acid) (ACVA). The aryl bromides reduce at lower rates onder
tin-free conditions using simply NaBH-ACVA.

As part of a developing interest in aqueous organic chemistry,1 our attention was drawn to the chemistry
of carbon centered radicals.2 Although many water-compatible reactions likely involve radical intenmediates,
explicit agueous radical chemistry is not well developed.3 The most prominent example is that reported by
Breslow and Light entailing aqueous reductions using the water-soluble (MeOCH2CH2OCH,CH,CH,);SnH (1)
with the aid of a commercially available, water soluble initiator 4,4'-azobis(4-cyanovaleric acid) (ACVA).4
Mixtures of 1 and ACVA certainly offer extremely viable water-compatible equivalents to the n-BusSnH/AIBN
combination used so frequently in organic solvents. However, the requisite 5-step synthesis of 1 proved
restrictive for our needs. We had the notion that in situ reductionS of a more accessible water-soluble tin halide (or
pscudo-halide) by NaBH, might offer a uscful alternative to the Breslow-Light protocol.

We prepared dialkyltin(TV) reagent 2 by modifying a literature hydrostannylation protocol6 as shown in eq
1. The identity of 2 was difficult to establish due to its insolubility in water and the standard organic solvents.
The assignment is based upon elemental analysis,6 IR data,? and the propensity of tin acylates to form insoluble
polymers.$ Compound 2 readily dissolves in agucous base, affording & species exhibiting NMR spectroscopic
properties consistent with 3. Furthermore, acidification causes immediate precipitation of 2.
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Heating a solution of m-bromobenzoic acid, 2 (i.e. 3, 1.2 equiv), NaBH4 (2.0 equiv), and ACVA (0.1-
1.0 equiv) in degassed 1.5% KOH/H,0 at 80 oC for scveral hours affords benzoic acid in near quantitative yield.
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Photolysis does not measurably influence the reaction rates or yields. A limited survey of radical cyclizations
(Table I) revealed rates and isolated yields that are comparable to those obtained using n-BusSnH/AIBN on the
corresponding esters in benzene. We observed no unusual effects of the water. A resistance of alkyl-and aryl
chlorides to reduce should be noted. Additionally, efforts to generase a preformed tin-hydride species analogous to
the Breslow-Light reagent for reduction of NaBH4-sensitive substrates met with little success.

Table I. Reduction of aryl and alkyl bromides by aqueous NaBH4-ACVA-3.
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2Ar « p-CgHyCOOH, Ar' = m-CgH4COOH. bsubstrates (0.04 mmof) were reduced at 90 °C in degassed

1.5% aq KOH (1.33 mL) containing NaBH, (2.0 equiv), ACVA (1.0 equiv), and 2 (1.2 equiv). Normal extrac-
tive workup, esterification with ethereal CHzN2 and purification (flash chromatography) afforded the reported
yields. Sisolated as a mixiure containing two of four possible sterecisomers. Equilibrations with TiICl, and
analogy with kterature reports (Stork, G.; Mook, R.; Billen, S. A.; Rychnovsky, 8. D. J. Am. Chem. Soc. 1983,
105, 3741) implicate trans 1,2 stereochemistry with a mixture at the acetal. Mixture of both stereolsomers.
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Control experiments revealed that the ACVA radical initiator and NaBH, are both essential components.
While the reduction is catalytic in both 2 and ACVA, the rates reflect a qualitative proportionality to the
concentrations of 2, NaBH,, and ACVA. GC-MS analysis of the benzoic acid resulting from reduction of m-
bromobenzoic acid by NaBH4/D20 and NaBD4/D,0 demonstrate that the hydrogen atom derives from the
NaBH,4. However, the role of the tin hydride precursor is more complex than first anticipated. Omission of 2
completely precludes reductions of aliphatic bromides. Shiggish reduction of the aliphatic bromides is observed
when 2 is replaced by PhSnCl; (i.e. PhSn(OH),). Neither elemental tin nor SnCl; mediates any detectable
reduction. In contrast, aryl bromides reduce smoothly, albeit at reduced rates, using NaABHY/ACVA in the
absence of any tin-containing species. Reduction rates comparable to the tin-mediated examples are observed
using excess (8.0 equiv) NaBH4. We are unaware of any reports of catalysis by azo initiators.? Additional
examples of the NaBH4/ACVA-mediated reductions of aryl halides are listed in Table I1.

Table II. Reduction of aryl and alkyl bromides by aqueous NaBH4-ACVA.*®

Substrate Product Yield
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*Ar = p-CeH COOH. PReaction conditions were as described in the text. Yields correspond
to purified material after a normal extractive workup and esterification with ethereal CHoN,.

The role of the tin(IV) species and the mechanism of the reduction are not at all clear at this time.
However, both the tin-catalyzed reduction protocol as well as the tin-free NaBH4-ACVA variant may find utility
due 1o reagent availability and overall simplicity.
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